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A B S T R A C T   

It has been reported that the transmission of COVID-19 can be influenced by the variation of environmental 
factors due to the seasonal cycle. However, its underlying mechanism in the current and onward transmission 
pattern remains unclear owing to the limited data and difficulties in separating the impacts of social distancing. 
Understanding the role of seasonality in the spread of the COVID-19 pandemic is imperative in formulating 
public health interventions. Here, the seasonal signals of the COVID-19 time series are extracted using the EEMD 
method, and a modified Susceptible, Exposed, Infectious, Recovered (SEIR) model incorporated with seasonal 
factors is introduced to quantify its impact on the current COVID-19 pandemic. Seasonal signals decomposed via 
the EEMD method indicate that infectivity and mortality of SARS-CoV-2 are both higher in colder climates. The 
quantitative simulation shows that the cold season in the Southern Hemisphere countries caused a 59.71 ±
8.72% increase of the total infections, while the warm season in the Northern Hemisphere countries contributed 
to a 46.38 ± 29.10% reduction. COVID-19 seasonality is more pronounced at higher latitudes, where larger 
seasonal amplitudes of environmental indicators are observed. Seasonality alone is not sufficient to curb the virus 
transmission to an extent that intervention measures are no longer needed, but health care capacity should be 
scaled up in preparation for new surges in COVID-19 cases in the upcoming cold season. Our study highlights the 
necessity of considering seasonal factors when formulating intervention strategies.   

1. Introduction 

The COVID-19 pandemic continues to spread rapidly across the 
world, which poses a dire threat to international public health (Huang 
et al., 2020c; Kraemer et al., 2020; Lai et al., 2020; Li et al., 2020b). 
Despite the worldwide implementation of various intervention measures 
from national quarantines to school closures, the COVID-19 pandemic 
has resulted in huge disruptive impacts on almost the entire sectors of 
society (Chowdhury et al., 2020; Lian et al., 2020a) and overwhelmed 
the healthcare systems in many well-resourced countries (Kissler et al., 
2020). Recently, multiple new, more transmissible variants of 
SARS-CoV-2 have been circulating globally (WHO, 2021). A first gen-
eration of COVID-19 vaccines has become available for general public 
since the end of 2020, while studies are still underway to test whether 
the vaccines are still effective against these new variants (Mahase, 
2021). The world is entering a new phase in its fight against the 
COVID-19 pandemic, and how long will it take to embrace full 

resumption of pre-COVID-19 normalcy remains highly uncertain (Pot-
vin, 2021). 

The seasonal cycle is a ubiquitous feature of influenza and other 
respiratory viral infections, particularly in temperate climates (Marti-
nez, 2018). Since the beginning of the outbreak, there was widespread 
speculation that COVID-19, like other respiratory viral infections, might 
exhibit some form of seasonality. Research has reported that the trans-
missibility of coronavirus can be affected by several meteorological 
factors, including temperature and humidity (Altamimi and Ahmed, 
2020; Cai et al., 2007), which influences the survival of the virus in the 
transmission routes. Numerous epidemiological and laboratory studies 
have explored the relationship between COVID-19 transmission and 
meteorological factors, while these findings are controversial. Huang 
et al. (2020b) found that 60.0% of the confirmed cases of COVID-19 
occurred in places where the air temperature ranging from 5 ◦C to 
15 ◦C. A study by Sajadi et al. (2020) found that the substantial com-
munity outbreaks of COVID-19 are distributed in the regions with mean 
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temperatures between 5 and 11 ◦C, combined with low humidity (3–6 
g/kg). However, Yao et al. (2020b) reported that no association between 
COVID-19 transmission and temperature in Chinese cities was found. A 
study has shown that the positive rate (26.9%) of exhaled breath from 
COVID-19 patients (Ma et al., 2020) is significantly higher than that of 
the surface (5.4%) and air (3.8%), indicating airborne transmission as 
the major transmission route (Wilson et al., 2020; Yao et al., 2020a; 
Zhang et al., 2020a). Since the virus can remain viable in the air for 
multiple hours under favorable conditions (van Doremalen et al., 2020), 
we can reasonably speculate that the virus can be affected by wind 
conditions such as wind speed and direction. A study has found that a 
low wind speed is significantly correlated with higher COVID-19 cases in 
Jakarta, Indonesia, and the highest COVID-19 cases in the area fit in 
with wind direction blows (Rendana, 2020). However, another case 
study in Turkey shows that COVID-19 spreads more in windy weather 
(Coşkun et al., 2021). Numerical simulation also indicates that the 
microdroplets can transport in the air farther than 10 feet (3.05 m) due 
to wind convection, causing a potential health risk to nearby people 
(Feng et al., 2020). Wind and air circulation, which both display sea-
sonality, may also potentially influence the transmissibility of the virus. 

In addition to the meteorological factors, environmental factors 
including air pollution are also found to be related to COVID-19 inci-
dence (Coccia, 2020a, 2020b) and other respiratory infections (Tong, 
2019). Exposure to fine particulate matter, O3, and NO2 can influence 
the immune system of the susceptible population (Glencross et al., 
2020), which may exert a direct impact on the severity of COVID-19 
symptoms and mortality. In United States, higher historical PM2.5 ex-
posures are found to be positively associated with higher county-level 
COVID-19 mortality rates after accounting for many area-level con-
founders (Wu et al., 2020). Bilal et al. (2020) found that PM2.5, O3, and 
NO2 have a significant relationship with the outbreak of COVID-19 in 
Germany. Studies also show that the interactions between atmospheric 
stability (wind speed) and air pollution can affect the spread of 
COVID-19 cases. Low wind speed is unfavorable for horizontal disper-
sion of pollutants (Cai et al., 2017) and causes pollutants to be trapped 
near ground level. High concentration of air pollutants, associated with 
low wind speed may support longer permanence of viral particles in the 
polluted air, thus promoting the pollution-to-human transmission 
(Coccia, 2020c, 2020d). 

Laboratory studies of SARS-CoV-2, the virus that causes the COVID- 
19, also pointed out that the stability of the virus in the air or on surfaces 
is sensitive to environmental conditions, including humidity, tempera-
ture, sunlight, etc. The virus is more stable at low-temperature and low- 
humidity conditions, whereas warmer temperature and higher humidity 
shorten half-life (Matson et al., 2020). SARS-CoV-2 can persist for 14, 7, 
and 1 day under laboratory conditions at 4 ◦C, 22 ◦C, and 37 ◦C, 
respectively. When the temperature is increased to 56 ◦C, the persistence 
is dramatically reduced to 10 min (Chin et al., 2020). Experiments have 
shown that SARS-CoV-2 can remain viable and infectious in aerosols for 
hours at room temperature (21 ◦C–23 ◦C) and a fixed relative humidity 
of 65% (van Doremalen et al., 2020). Another study shows that simu-
lated sunlight can rapidly inactivate SARS-CoV-2 suspended in either 
simulated saliva or culture media and dried on stainless steel coupons 
(Ratnesar-Shumate et al., 2020). 

Despite the strong sensitivity of SARS-CoV-2 to environmental con-
ditions in labs, these studies fail to prove the direct meteorological in-
fluence under real-world conditions. Furthermore, the existing studies 
concerning the role of meteorological factors on the COVID-19 trans-
mission dynamics under realistic conditions are mostly based on linear 
and non-linear statistical analysis (Prata et al., 2020; Xie and Zhu, 
2020). Limitations in COVID-19 data availability and quality remain 
obstacles to conducting conclusive studies on this topic. The public 
health interventions taken by various countries may have complicated 
the association between meteorological factors and virus transmission 
(Audi et al., 2020). Compared with the statistical models, epidemio-
logical models could serve to reveal the intrinsic impact of 

under-reported cases and the intervention measures during the entire 
procedure of the outbreak (Harko et al., 2014; Peng et al., 2020), and 
have been widely used to examine the effects of non-pharmacological 
interventions around the world (Davies et al., 2020; Lai et al., 2020). 
In this study, the influence of seasonality on the spread of COVID-19 
transmission is investigated both qualitatively and quantitatively (see 
Fig. 1). We first use an adaptive time-space analysis method (Ensemble 
Empirical Mode Decomposition, EEMD) to detect the seasonal signals in 
the time series of COVID-19 cases. Another approach, a modified version 
of the Susceptible, Exposed, Infectious, Recovered (SEIR) model incor-
porated with seasonality, is introduced to quantitatively explore the 
potential contribution of the seasonal cycle to the spread of the 
COVID-19 epidemic. The seasonal signals derived from the empirical 
(EEMD method) and process-based (compartmental model) models are 
analyzed and compared with seasonal signals of the meteorological and 
environmental factors. Finally, we propose a set of mechanisms through 
which the seasonal cycle of meteorological and environmental influence 
the transmission of COVID-19. 

2. Data and method 

2.1. Data source and country selection 

The COVID-19 dataset (confirmed, recovered, and death cases) are 
collected from the COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University (Dong 
et al., 2020). The dataset illustrates the location and number of 
confirmed COVID-19 cases, deaths, and recoveries for all affected 
countries in real-time. The data could be accessed through a Github 
repository (https://github.com/CSSEGISandData/COVID-19). 

We will also analyze the correlation between environmental vari-
ables (meteorological factors and air quality) and the seasonality of 
COVID-19. For meteorological factors, we use near surface temperature 
and specific humidity of NCEP/NCAR reanalysis data (Kalnay et al., 
1996). The NCEP/NCAR Reanalysis 1 project uses a state-of-the-art 
analysis/forecast system to perform data assimilation using past data 
from 1948 to the present. In this work, a climatology of 1980–2010 
monthly means is calculated to present a seasonal cycle. Air quality data 
(total column NO2 and PM2.5 concentrations) are obtained from the 
EAC4 (ECMWF Atmospheric Composition Reanalysis 4). Observations 
from across the world are incorporated into a globally complete and 

Fig. 1. Schematic illustration of assessing the influence of seasonality on 
COVID-19 pandemic. 
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consistent dataset using a model of the atmosphere based on the laws of 
physics and chemistry. The observing system has changed drastically 
over time. Although the assimilation system can resolve data holes, the 
initially much sparser networks will lead to less accurate estimates. For 
this reason, EAC4 is only available from 2003 onwards. We calculated 
the climatology of 2003–2019 monthly mean to present the seasonal 
cycle. 

The selection of countries is based on the following considerations. 
First, the seasonal cycle would exert a long-term effect on the develop-
ment of the epidemic, and the effect may vary spatially and temporally. 
Second, the Northern Hemisphere (NH) and Southern Hemisphere (SH) 
experience opposite seasons. Thus, in order to identify and extract the 
long-term impact of seasonality from the pandemic data and reflect its 
spatial discrepancy, we select 5 countries in the NH and 5 countries in 
the SH. Fig. S1 shows the top 5 countries with the most confirmed cases 
in both NH and SH as of Dec 31st, 2020 (tropical countries that lie along 
the equator are excluded since the climate tends to be relatively even 
year-round). These countries (United States, India, Russia, France, 
United Kingdom, Brazil, Argentina, South Africa, Peru, and Chile) are 10 
of the most affected regions by the COVID-19 pandemic, and contributed 
to 60.56% of the global cases as of Dec 31st, 2020. A wealth of outbreak 
data across different seasons in diverse climate zones makes it possible 
to draw out seasonal factors from the transmission dynamics. 

2.2. EEMD method 

We use the Ensemble Empirical Mode Decomposition (EEMD) 
method to detect the seasonal signals in the time series of COVID-19 
confirmed cases in these countries. EEMD is an adaptive one- 
dimensional time series analysis method (Huang and Wu, 2008; Wu 
et al., 2007), which separates scales naturally without any prior sub-
jective criterion. EEMD performs operations that partition a series into 
different ‘modes’ (Intrinsic Mode Functions, IMFs). The modes can 
provide insight into various signals contained within the data. This 
method has been widely applied in climatic and oceanic analysis (Ji 
et al., 2014), biomedical signal processing (Colominas et al., 2014), etc. 

EEMD is a noise-assisted technique, and is meant to be more robust 
than simple Empirical Mode Decomposition (EMD). EEMD creates an 
ensemble of workers, each of which performs an EMD on a copy of the 
input signal with added noise. When all workers finish their work, a 
mean over all workers is considered as the true decomposition, and the 
noise will cancel each other out. In this study, the white noise added to 
data has an amplitude that was 0.05 times the standard deviation of the 
raw data, and the ensemble number is 100. The result of EEMD could be 

expressed by the following equation: 

X(t)=
∑n

i=1
IMFi(t) + rn(t), (1)  

where IMFi(t) is the ith IMF, and rn(t) is the residual of data X(t), which is 
monotonic or containing only one extremum from which no additional 
oscillatory components can be extracted. As demonstrated in previous 
studies (Ji et al., 2014; Wu et al., 2007), the extracted trend (rn) follows 
no priori, and also has low sensitivity to the extension (addition) of new 
data. This property guarantees that the physical interpretation within 
specified time intervals does not change with the addition of new data, 
consistent with a physical constraint that the subsequent evolution of a 
system cannot alter the reality that has already happened. 

A python module (PyEMD) for EEMD is available at https://www. 
github.com/laszukdawid/PyEMD (Laszuk, 2017). Since the prevalence 
of COVID-19 varies significantly across countries, for comparison we 
scale the time series of each country so that they range between 0 and 1 
before conducting EEMD. 

2.3. The modified SEIR model and parameter estimation 

The SEIR model defines the four stages: the susceptible (S), exposed 
(E), infective (I), and recovered (R). However, the SEIR model may be 
oversimplified to simulate and predict the ongoing COVID-19 pandemic. 
Presymptomatic and asymptomatic transmission have been reported to 
play significant roles (Oran and Topol, 2020). Additionally, to contain 
the outbreak, a package of unprecedented social distancing measures 
has been implemented worldwide. Thus, a lot of variants of the SEIR 
model have been developed (Huang et al., 2020a). In this paper, we 
employed one of the modified versions (Cheynet, 2020; Peng et al., 
2020). The model (see Fig. 2a) consists of the following equations: 

dS(t)
dt

= −
βI(t)S(t)

N
− αS(t) (2)  

dP(t)
dt

= αS(t) (3)  

dE(t)
dt

=
βI(t)S(t)

N
− γE(t) (4)  

dI(t)
dt

= γE(t) − δI(t) (5)  

Fig. 2. The modified SEIR model (a) and rolling window method (b).  
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dQ(t)
dt

= δI(t) − λQ(t) − κQ(t) (6)  

dR(t)
dt

= λQ(t) (7)  

dD(t)
dt

= κQ (t) (8) 

This version of the SEIR model adds several new groups of popula-
tion: the protected (P), the quarantined (Q), and separates the recovered 
(R) and dead (D) cases. In this model, the susceptible (S) can either be 
protected to become the protected (P) at the rate of α (protection rate) or 
get infected to become the exposed (E) at the rate of β (transmission 
rate). After an individual is infected, it will take a certain period of time 
(pre-infectious period, 1/γ) before he or she becomes infectious (I, 
capable of transmitting the virus to susceptible individuals). The infec-
tious will then spread the virus to others before admitted to the hospital 
at the rate of δ (entering the quarantined stage, Q). The quarantined 
people cannot spread the virus and will be reported either as the 
recovered cases (R) or, unfortunately, death cases (D). λ and κ are the 
recovery rate and death rate, respectively. The parameters describing 
the transition between the stages (except α) are all positive numbers. 
When α>0, individuals are passed from group S to group P, indicating 
the implementation of social distancing measures. When α<0, in-
dividuals would return from group P to group S, demonstrating the 
relaxation of restrictions. The parameters in this model 
(α, β0, β1, γ, λ, δ, and κ) determines the rate of transition between stages 
(S, P, E, I, Q, R, and D), and shapes the epidemic curves. It should be 
noted that the infectious population is defined as the population capable 
of transmitting the virus, including the symptomatic, asymptomatic, and 
presymptomatic. We do not separate the asymptomatic, and presymp-
tomatic from the infectious group due to the high uncertainty of the 
reported proportions of presymptomatic and asymptomatic trans-
mission (Yanes-Lane et al., 2020). Adding additional unknown stages 

would make the model harder to constrain and significantly undermine 
the model stability, since only the data of three stages (Q, R, and D) are 
available to constrain the model parameters. The retrieved transmission 
rate (β) reflects the average transmissibility of COVID-19 in different 
transmission paths. This work aims to quantify the overall effect of 
seasonality on the COVID-19 transmission pattern. 

We further modified the model by incorporating the seasonality 
factor in the transmission rate (β). Currently, 4 known seasonal coro-
naviruses circulate in human populations, including 2 alpha- 
coronaviruses (NL63 and 229E) and 2 beta-coronaviruses (OC43 and 
HKU1) (Kissler et al., 2020; Li et al., 2020a). Like seasonal influenza, 
they are more prevalent in the winter months. SARS-CoV-2 is one of the 
beta-coronaviruses and it is reasonable to speculate that SARS-CoV-2 
would follow a similar seasonal pattern. Thus, we define β as a func-
tion of seasonality: 

β(t)= β0(t)[1+ β1(t)cos(
2πt
365

+ϕ)]. (9)  

β0 is the non-seasonality transmission rate, which is associated with the 
virus itself, population density, etc. β1 is the amplitude of seasonal 
forcing, which modulates the transmissibility throughout the year. t 
denotes the day of the year. ϕ is set to 0 (π) in the NH (SH) to describe the 
anti-phases in the opposite hemispheres. The theoretical time curve of 
β(t) for both NH and SH is shown in Fig. S2. 

However, it should be noted that Eq. (9) is not undisputed. In some 
regions of the world, the transmission capacity of SARS-CoV-2 is not 
significantly reduced during the summer seasons, and the underlying 
mechanisms remain unclear (Carlson et al., 2020). Therefore, Eq. (9) 
could be replaced with other functions obtained in future epidemio-
logical and laboratory studies concerning the environmental sensitiv-
ities of SARS-CoV-2. 

The parameters (α, β0, β1, γ, λ, δ, and κ) are optimized using the 
nonlinear least-squares algorithm (Levenberg-Marquardt method). The 
algorithm finds the model parameters that minimize the sum of the 

Fig. 3. Seasonal signals of confirmed cases in the five NH and five SH countries decomposed by the EEMD method. The top and bottom panels show the overall trend 
(black curves) and the trend superimposed with seasonal oscillation (red curves). The middle panel shows the seasonal oscillations for the selected NH (red) and SH 
(blue) countries. The red and blue thick curves denote the average seasonal signals for NH and SH, respectively, with error bars indicating 95% confidence intervals. 
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squared point-by-point distances between the model prediction and the 
data (residual). The values of parameters (α, β0, β1, γ, λ, δ, and κ) are 
determined when the residual reaches its minimum. To define a realistic 
range of these parameters and understand their meaning, the upper and 
lower boundaries of the parameters are set (See Table S1). 

Since the local authorities would adjust the intervention strategy in 
different phases of the outbreaks, the parameters in the model should 
variate accordingly. In addition, the parameters describing the trans-
mission capacity (β0 and β1) are not biological constant, and would also 
be affected by environmental conditions and behaviors of the infected 
individuals. Therefore, a rolling window method is employed to retrieve 
the parameters on a regular basis (window size = 30 days, interval = 5 
days, see Fig. 2b). The differential equations are numerically solved by 
the 4th order Runge–Kutta method. In the simulation of the scenarios 
without seasonality, β1 is set to zero to exclude the contribution of the 
seasonal cycle to the transmission rate β(t). 

The reported data in the selected countries are preprocessed before 
they are introduced to fit the parameters. In the initial stage of the 
outbreak, the quality of the reported data might be influenced by the 
lack of local medical capacity. The introduction of these early-stage data 
could result in large uncertainty of the model simulation. Therefore, we 
set an empirical threshold to introduce the reported data into our model 
when the local confirmed cases reach 1000. The time range of the data 
introduced in the simulation for each country is listed in Table S2. 

3. Result 

3.1. Seasonal signals in the COVID-19 time series 

To extract the seasonal oscillation of the COVID-19 time-series, we 
decomposed the time series of daily confirmed and death cases of the ten 
countries from both NH and SH. Before the decomposition, the COVID- 
19 time series of each country are scaled so that their values range be-
tween 0–1, which makes it possible to compare the amplitude and phase 
of the intrinsic oscillation of different countries. The full decomposition 
result, as shown in Figs. S3–S12, can reveal the oscillation characteristic 

of the COVID-19 time series in different timescales (weekly, sub- 
seasonal, and seasonal). In weekly oscillations of the selected coun-
tries, high values usually occur during the weekdays and low values 
during the weekend. This is associated with high testing capacity and 
relatively short reporting delay during the weekday and low testing 
capacity and long reporting delay during the weekend (Dehning et al., 
2020). For some countries (US, France, United Kingdom, and Brazil), the 
scaled confirmed and death cases indicate that the death rate of the 
resurgence during wintertime is significantly lower than the first surge, 
which might be associated with expanded medical resources. 

For seasonal oscillation, the NH and SH are almost in the opposite 
phase, as shown in Figs. 3 and 4. In SH countries, the seasonal signals for 
confirmed and death cases peak on Jul. 16th and Jul. 24th, which is the 
coldest time of the year. For NH countries, however, the signals reach 
the trough during the warmest time of the year, on Aug. 22nd for 
confirmed cases and Aug. 28nd for death cases. The seasonal signals in 
NH countries show a significant upward trend as winter comes. The 
zero-crossing point of the seasonal signals could be interpreted as the 
seasonal transition point. In SH countries, the cold phase is between May 
23rd and Oct. 10th for confirmed cases, and between May 11th and Sep. 
15th. For NH, the warm phase for confirmed (death) cases is between 
May 30th and Oct. 22nd (Jul. 3rd and Oct. 24th). The zero-crossing 
points for both NH and SH are generally consistent with the seasonal 
cycle of meteorological variables. 

Overall, the seasonal signals decomposed via the EEMD method 
indicate that infectivity and mortality of SARS-CoV-2 are both stronger 
in colder climates. However, it should be noted that the signals are also 
influenced by the effect of non-pharmacological interventions, including 
lockdowns, mandated face covering, etc. The EEMD signals can only 
provide a qualitative estimation of the seasonal impact. In the following 
section, we will employ a process-based model to simulate the COVID-19 
curves so that a quantitative result could be offered. 

3.2. Simulation of COVID-19 pandemic using modified SEIR model 

Here, we use a modified SEIR model (See section 2) to simulate the 

Fig. 4. Same as Fig. 3, but for death cases.  
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evolution of the COVID-19 pandemic in the selected countries, and 
quantify the impact of seasonality on it. We first use the COVID-19 
dataset to fit the model parameters with a rolling window method 
(See Fig. 2b). Then, we solve the modified SEIR model using the fitted 
parameters (α, β0, β1, γ, λ, δ, and κ). The solutions of the SEIR model are 
validated against the observation (reported COVID-19 dataset). 
Figs. S13 and S14 show the correlation between the simulated and re-
ported cases in the 10 countries, with Pearson correlation coefficients at 
the upper-left corner of the sub-figures. Rdaily refers to the correlation 
coefficients between simulated and reported daily increments, while 
Rtotal refers to the correlation coefficients between simulated and re-
ported accumulated cases. The SEIR model proposed in this study 
faithfully reproduced the outbreak development, with averaged Rtotal 

(Rdaily) reaching 0.999 (0.90) (see Table 1). 
In our model, the seasonality of transmission rate is reflected in β1 in 

Eq. (9). Thus, the transmission rate without seasonality can be obtained 
by setting the term containing β1 in Eq. (8) to zero. Fig. 5a and b shows 
the evolution of transmission rates in the NH and SH countries. From 
May to September 2020, the non-seasonality transmission rate (blue 
curve) in NH is generally higher than the transmission rate with sea-
sonality (red curve), while in the SH the transmission rate with sea-
sonality is higher. In other words, the summer season exerts a reducing 
effect on the transmission rate, while the winter season can enhance the 
transmission rate. The seasonal variation of transmission rates derived 
from the modified SEIR model is generally consistent with the seasonal 
signals extracted by the EEMD method (see Figs. 3 and 4). Studies have 
found that the survival time of coronavirus on surfaces could depend on 
the decrease or increase in environmental temperatures (Tan, 2005), 
and the lower temperature is associated with increasing daily incidence 
rate. In NH, the temperature usually peaks in July and falls to the lowest 
in January, whereas in the SH the situation is the opposite. The trans-
missibility of influenza and several types of coronaviruses may enhance 
in the SH winter and reduce in the NH summer. Generally, the simula-
tions of both hemispheres and the seasonal signals decomposed by the 

Table 1 
Validation of the modified SEIR model. The numbers in the brackets denote the 
95% confidence intervals.   

Rtotal Rdaily 

NH countries 0.9997 (0.0007) 0.9772 (0.0448) 
SH countries 0.9999 (0.0001) 0.9153 (0.1017)  

Fig. 5. The average transmission rates (β) in the NH (a) and SH (b) countries, respectively. The red curves show the simulated transmission rate with actual pandemic 
data (with seasonality), while the blue curves show the transmission rate with seasonality influence excluded (without seasonality). The 90% confidence intervals are 
indicated by the corresponding color shading. 

Fig. 6. Daily new cases of COVID-19 in 10 countries. The upper panels show the 5 NH countries, and the lower panels show the 5 SH countries. The red bars denote 
the reported daily new cases. The solid black curves refer to the simulated daily new cases, and the dotted black curves refer to the simulation with seasonality 
influence excluded. The contribution of seasonality to the total infections are plotted on the map. 
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EEMD method corroborate the effect of the seasonal cycle on the 
transmission rate: the reduction effect in the warm seasons and the 
amplification effect in the cold seasons. 

To explore the contribution of seasonality to the COVID-19 
pandemic, we design a scenario that excludes the seasonality factor. In 
this scenario, the parameters (α, β0, γ, λ, δ, and κ) remains consistent 
with the previous simulation, while the seasonality term with β1 in Eq. 
(9) is removed to obtain the non-seasonality transmission rate. Figs. 6 
and 7 show the simulations of daily increment of confirmed and death 
cases in the 10 countries, and the contribution of seasonality of each 
country is mapped. In the NH countries, the number of confirmed and 
death cases in seasonality scenario is significantly lower compared with 
the non-seasonality scenario, while in the SH countries the COVID-19 
cases in the non-seasonality scenario are significantly higher. The dif-
ference between seasonality and non-seasonality scenarios mainly oc-
curs in summer/winter, when changes of environmental conditions are 
most obvious in an annual cycle. In the SH countries, the total infections 
in the non-seasonality scenario are 59.71 ± 8.72% less than the actual 
total infections, while the non-seasonality scenario can contribute to 
46.38 ± 29.10% of the total infections in the NH countries. However, 
these results should be interpreted with caution. Since intervention 
measures in the simulation of the non-seasonality scenario are consistent 
with the actual situation, the reduction or increment of COVID-19 
prevalence in non-seasonality is attributable to the combined effects of 
non-pharmacological interventions and environmental conditions. 

Although seasonal variability may have played an important role in 
the evolution of the outbreaks, its actual effect is limited. In the simu-
lations of the non-seasonality scenario, none of the outbreaks is 
completely restrained in the SH countries, and actual pandemic data in 
the NH reveals no significant downward trend during the summer 
months. During the first wave of the H1N1 pandemic in 2009, the 
growth of incidence in NH was still obvious in August, when environ-
mental condition is most unfavorable in the year. At the beginning of an 
outbreak, the transmission is unlikely to stop even with strong seasonal 
drivers, because immunity is lacking and almost all the population is 
susceptible to the disease (Carlson et al., 2020). High susceptibility is a 
core driver in the early stage of the outbreak (Baker et al., 2020). 
Therefore, the trajectory of the epidemic depends on a combination of 
factors, and seasonal variability is insufficient to stop virus transmission. 

Favorable climate conditions will not be able to reduce the trans-
missibility of the virus to an extent that interventions are no longer 
needed to curb its spread. 

In addition, the simulations indicate discrepancies in the contribu-
tion of seasonality to different regions. In NH countries, the seasonality 
produces a disincentive effect on COVID-19 development, indicating the 
reduction caused by the warmer climate, while the seasonality encour-
ages the growth in SH countries. We mapped the distribution of their 
contribution and found that the contribution of the seasonal cycle is 
more obvious in high latitude countries, where the local seasonal cycle is 
more pronounced. We further calculated the standard deviation of the 
seasonal signals extracted by the EEMD method to quantify the ampli-
tude of seasonal signals, and analyzed their correlation with latitude. 
The contribution in NH countries derived from the models are all 
negative, and the seasonal signals in NH and SH countries extracted by 
the EEMD method are opposite. Therefore, for NH countries, the stan-
dard deviations are set to their opposite numbers for the convenience of 
comparison. Since the COVID-19 cases are reported on country level, a 
representative latitude for each country should be identified, and factors 
like the distribution of the human population, economic development, 
etc. should be taken into account. Here, we use weighted geographic 
centers derived by global nighttime lights data (Hall et al., 2019) as the 
representative geographic points (see the red points in Fig. S15). Fig. 8a 
and b shows the correlation between latitude and the strength of sea-
sonal signals. The EEMD method (qualitative approach) and epidemical 
model (quantitative approach) corroborate each other, and arrive at an 
agreement that the seasonal signals are stronger in high latitude 
countries. 

The amplitude of seasonal changes during a year depends strongly on 
the latitude. For instance, there are only small seasonal changes in 
temperature at lower latitudes with increasingly larger seasonal changes 
in temperature at higher latitudes (see Fig. S15a). We further analyze the 
seasonal amplitude of two meteorological factors (near surface tem-
perature and near surface humidity) and two air quality indicators (total 
column NO2 and PM2.5 concentrations). Fig. S15 shows the global dis-
tribution of the seasonal amplitude of the four environmental indicators. 
The amplitude of the temperature seasonal cycle is most obvious in high 
latitude regions, which is directly associated with periodic shifts of 
subsolar point. Stronger temperature amplitude is observed on land due 

Fig. 7. Same as Fig. 6, but for death cases.  
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to the smaller specific heat capacity of land than seawater. For specific 
humidity, large amplitude is mainly distributed in the monsoon regions, 
where significant seasonal changes in atmospheric circulation and pre-
cipitation associated with the asymmetric heating of land and sea occur. 
For air quality indicators, large standard deviation is expected in heavily 
polluted regions, while in the natural background with little or no 
human activities, the standard deviation is extremely small. Therefore, 
to make comparison between the dispersion level of data (seasonal 
amplitude) whose scales of measurement are not comparable, coeffi-
cient of variation (the ratio of the standard deviation to the mean) is 
calculated on each grid to reveal the spatially comparable amplitude. 
The relationship between the seasonal amplitude of environmental 
factors and latitudes are shown in Figs. 8 (c ~ f), with larger amplitudes 
in higher latitudes. Thus, regions with stronger COVID-19 seasonal 
signals coincide with the regions with stronger environmental seasonal 
signals. This implies that the COVID-19 pandemic is prone to the in-
fluence by the variation of environmental conditions, and the degree of 
its influence is highly correlated with the amplitude of local environ-
mental conditions. Seasonality is more pronounced at higher latitudes, 
which may exert a larger impact on the spread of SARS-CoV-2. 

3.3. How does seasonality influence the COVID-19 transmission: a set of 
possible mechanisms 

Numerous mechanisms, through which environmental conditions 
influence the transmission of respiratory viral infections other than 
COVID-19, have been proposed. Here, based on our qualitative and 
quantitative assessment of seasonality in COVID-19 transmission, we 
propose a set of mechanisms on how seasonality can affect the spread of 
COVID-19 (see Fig. 9). First, variations of environmental conditions due 
to the seasonal cycle can affect the viability of the virus. Aerosol 
transmission is identified as one of the potential transmission routes of 
SARS-CoV-2 (Yao et al., 2020a; Zhang et al., 2020a) and can be 
enhanced in low humidity environments. Low humidity can induce 
evaporation of water vapor from the exhaled bioaerosols, contributing 
to the formation of droplet nuclei that stay suspended in the air for 
prolonged periods (Tellier, 2006). It has been speculated that cool and 
dry conditions are especially suitable for aerosol transmission of viruses 
in temperate winter (Lowen et al., 2008). On the other hand, high hu-
midity would increase the efficiency of contact transmission. High hu-
midity can promote the survival of the virus by influencing the 
evaporation of virus-containing droplets (Yang et al., 2012). This will 
influence the survival of the virus on surfaces contaminated by respi-
ratory secretions. 

Second, the seasonal cycle of environmental conditions would also 

Fig. 8. The correlation between latitude and seasonal signals of COVID-19 pandemic. (a): the amplitude of seasonal signals decomposed by the EEMD method. The 
amplitude is quantified by the standard deviation of EEMD signals. (b): the contribution of seasonal factors derived from the modified SEIR epidemiological models. 
The blue dots denote the confirmed cases and red dots denote death cases in (a) and (b). (c ~ f): seasonal amplitude of meteorological (near surface temperature and 
specific humidity) and environmental factors (total column NO2 and PM2.5 concentrations). The amplitude of the meteorological variable is quantified by the 
standard deviation of monthly values in an annual cycle, and the amplitude of the air quality indicator is quantified by the coefficient of variation. For the con-
venience of comparison, the seasonal amplitudes of NH countries are all set to their opposite number. 
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influence human behaviors and immunity. During the cold and rainy 
days, people tend to gather and stay indoors, which would exacerbate 
the risk of infection (Orenes-Piñero et al., 2021). Available contact 
tracing data indicate a high proportion of indoor infection of 
SARS-CoV-2 (Qian et al., 2020). Extreme warm weather might also 
contribute to the spread of the virus. Mask wearing can induce increased 
facial skin temperature and discomfort, which could lower the wearing 
adherence in hot and humid weather (Scarano et al., 2020). The use of 
air conditioners could increase in hot weather, which may also increase 
the risk of indoor infection (Lu et al., 2020). Additionally, many studies 
indicated that immune function can be suppressed in cold environments, 
which would increase the risk of getting infected (Shephard and Shek, 
1998). Gathering activities and immunosuppressive effects induced by 
environmental changes would lead to the accelerated diffusion of 
COVID-19 and amplify the contribution of seasonality. Studies have also 
shown that atmospheric pollution may favor coronavirus spreading 
(Azuma et al., 2020; Fattorini and Regoli, 2020; Zhang et al., 2020b). 
Analysis of the SARS-CoV-1 and preliminary investigations of 
SARS-CoV-2 provide evidence that the incidence and severity are related 
to ambient air pollution (Pozzer et al., 2020). Changes in the sources of 
air pollution and meteorological factors can result in changes in char-
acteristics of the air pollution mixture across different seasons (Ming 
et al., 2017; Peng et al., 2005). This will also lead to varying degrees of 
their health impact in different seasons (Han et al., 2020). 

It should be noted, however, that the seasonal cycle can also be 
manifested in the complex interactions between some sets of environ-
mental and socio-economic variables. For example, air pollution has 
been proved as an important cofactor on increasing the risk of mortality 
from COVID-19 (Coccia, 2020b; Pozzer et al., 2020). Air pollution events 
do not always independently influence the COVID-19, but their com-
bined effects with the meteorological condition can aggravate the health 
consequence. High-pressure systems, which prevail over landmasses 
during winter, can create stagnant air. Low wind speeds reduce the 
dispersion of atmospheric pollutants, which can act as carrier of the 

SARS-CoV-2 in the air to sustain the diffusion of COVID-19 in the 
environment (Coccia, 2020a). In summer, low-pressure systems bring 
wet and windy conditions, which transport local pollutants to a new area 
and produce clear skies. In the selected 10 countries, PM2.5 and NO2 
concentrations are almost all higher during the winter season (see 
Figs. S18 and 19), which is associated with the seasonal cycle of mete-
orological factors, including temperature, humidity (see Fig. S16–17), 
and wind. In addition, since the outbreak, strict social distancing mea-
sures have been taken to curb the spread of virus. During the lockdown 
period, the intensity of human activities has significantly reduced, 
which leads to improved air quality, and lower COVID-19 infections 
(Lian et al., 2020b). The improved air quality is a consequence of intense 
non-pharmacological interventions, and might also potentially 
contribute to slowing down the COVID-19 transmission along with the 
lockdown measures. Their complex interactions may also exhibit some 
form of seasonality to influence the spread of COVID-19 and other dis-
eases. However, the relative contributions of these indicators to the 
modulation of COVID-19 seasonality warrant further investigations. 

4. Conclusions 

The COVID-19 pandemic marks the third global outbreak due to a 
coronavirus after severe acute respiratory syndrome (SARS) in 2003 and 
the Middle East respiratory syndrome (MERS) in 2012 (Sachs et al., 
2020), but MERS and SARS have never spread widely or rapidly enough 
to show seasonality. SARS-CoV-2 has infected over 100 million people at 
the time of writing these lines, and it is crucial to understand and project 
the transmission pattern of COVID-19. Numerical simulations based on 
the epidemiological model can provide valuable clues on its possible 
circulating season and how seasonality can influence the patterns of 
COVID-19 outbreaks. 

This study qualitatively and quantitatively analyzes the role of sea-
sonality in the spread of COVID-19. We find that COVID-19 infectivity 
and mortality of SARS-CoV-2 are both stronger in colder climates, and 

Fig. 9. The role of seasonality in the spread of COVID-19 pandemic.  
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COVID-19 seasonality is more pronounced at higher latitudes. Numeri-
cal simulation indicates that seasonality alone is not sufficient to stop 
the virus transmission in the warm season, but it should be taken into 
account in the future planning of intervention measures. Our findings 
have important implications in the control and prevention of COVID-19. 
Rational policy planning aggregated with beneficial effects of seasonal 
variation may provide a window of opportunity to expand healthcare 
capacities and develop effective and safe pharmacological treatments. In 
winter months, cases of COVID-19 may surge along with other corona-
viruses’ infections and seasonal influenza, which would trigger a sub-
stantial increase in the demand for healthcare system resources. 
Although vaccines have streamed into communities to protect people 
against coronavirus, scientists warn that herd immunity to the COVID- 
19 is not likely to be achieved in 2021 (VOA News, 2021). 

Nevertheless, our findings are interpreted in the context of several 
limitations in the study. First, as has been mentioned in Section 2, the 
seasonality incorporated in the modified SEIR model is an empirical 
formula [Eq. (9)], which is not undisputed. Here we provide a general 
framework on how to introduce seasonality into epidemiological 
models. The equation could be replaced with other functions obtained in 
future epidemiological and laboratory studies concerning the environ-
mental sensitivities of SARS-CoV-2. By introducing locally specific sea-
sonality function into our model, quantification with greater reliability 
is anticipated. The model could also be further generalized to quantify 
the seasonality influence on other infectious diseases and emergent 
pandemic. In addition, limited public health resources, discrepancies in 
reporting protocols may have resulted in potential biases in the COVID- 
19 dataset and added uncertainty to our study. Future research needs to 
adopt a more comprehensive epidemiological model in conjunction with 
multisource epidemiological and climate data to quantify the impact of 
seasonal factors on the spread of COVID-19. The modified SEIR model 
proposed in this paper is limited to the data on a national or regional 
scale, and could not be applied to the field data collected from in-
dividuals. Based on the results of the epidemiological survey with a 
special focus on the environmental condition when transmission 
occurred, we are able to make a broader and clearer assessment of the 
seasonal patterns of COVID-19 and the underlying mechanisms. How-
ever, collecting the field data through the epidemiological survey is a 
mounting task, considering the meager medical and human resource to 
undertake extensive survey that is statistically significant when the 
health system is overloaded. Thus, we suggest that epidemiological 
survey should be taken in regions where the COVID-19 outbreak is 
brought under control. Sporadic cases of COVID-19 makes it easier to 
conduct epidemiological survey with special focus on the environmental 
conditions when the transmission occurs. Effective multi-discipline 
collaboration (among epidemiology, environmental science, meteo-
rology, sociology, etc.) is required to illuminate the mechanisms of 
COVID-19 seasonality. 
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